3M™ Scotchcast™ Resins for Original Equipment Manufacturers

3M™ Scotchcast™ Electrical Liquid Resins are 100-percent solid, thermosetting, electrical-grade insulating resins. Classified chemically as either epoxies or polyurethanes, the product line includes two-part epoxy liquids and two-part polyurethane liquids. The unique electrical and physical properties make them ideal for insulating and protecting electrical and electronic parts and assemblies. Their physical features also make them suitable for nonelectrical, general use applications such as adhesives and sealants.

3M™ Scotchcast™ Powder Resins are a series of one-part, 100-percent-solid electrical-grade systems offering fast curing, excellent thermal and mechanical shock resistance, significant cut-through resistance, high adhesion, excellent chemical and moisture resistance, high-to-low flow characteristics, and excellent electrostatic coating capability.

Table of Contents

3M™ Scotchcast™ Electrical Liquid Resins ...1
Selection Process ...1
Product Selection Guide ...3
Typical Product Data...6
Viscosity ...10
3M Scotchcast Powder Resins ...11
Selection Process ...11
Product Selection Guide ...12
Typical Product Data...14
Other Insulating Products from 3M ...16
3M™ Scotchcast™ Electrical Liquid Resins

3M™ Scotchcast™ Electrical Liquid Resins are a two-part, 100-percent-solid system offering:

- Easy mixing ratios
- Moderate to long pot life
- Low exotherm
- High adhesion
- Good to excellent electrical properties
- Range of flexibility and viscosity

The basic Scotchcast liquid resin systems include flexible, semiflexible and rigid room-temperature-curing and oven-curing resins, some of which are then modified to create filled and thixotropic versions. Resins are available to meet temperature, class, color and special performance needs. All Scotchcast liquid resins are formulated and produced for convenient and reliable use. Simple mixing ratios and preproportioned packaging allow for easy handling and mixing, and reduce errors on the production line.

Selection process

The Scotchcast liquid resin most likely to succeed in an application can be selected through a process of elimination. Simply answer four basic questions in conjunction with the flow chart on page seven. The application questions are:

- Room cure or oven cure?
- Filler?
- Degree of flexibility?
- Temperature class?

The following sections provide some additional information that may be used to determine the answers to the above four basic questions.
Room cure or oven cure

In answering this question, consider:

The availability of ovens.
If unavailable, or if their purchase cannot be justified by application, volume, or rate requirements, a room-temperature curing resin must be selected.

The application process (i.e., dipping, potting, casting, impregnation, bonding).
From a production and engineering standpoint, oven cures are more versatile than room cures because they have long pot lives, short cure times and their viscosities can be lowered by warming.

The number of units to be processed.
Oven-curing resins are usually used in high-volume applications because they are less expensive than their room-curing counterparts. The expense of ovens is offset by a decrease in resin cost.

The mass of resin to be used per unit.
Room-curing resins rely heavily on the heat generated from their reaction for completion of cure. In a small mass, this heat dissipates quickly through the resin to the surrounding atmosphere so the center does not become too hot. In larger masses, however, the resin could act as a heat insulator and cause the interior temperature to rise rapidly. If uncontrolled, this rise in temperature could exceed the maximum temperature some components can tolerate. A high exotherm could also cause the resin to crack or char. If a large mass of a room temperature curing resin must be used, the exotherm problem can be overcome by curing the mass in layers and allowing each layer to cool before casting the next.

Rate of cure.
To obtain the fastest cure, small masses of room-curing products can be oven cured.

Filler

The handling and physical properties of the resin are important in answering this question. Consider the following:

Unfilled systems are used in applications where very low viscosity is a prerequisite; for example, impregnating small or tightly wound coils and filling small voids.

Filled systems are used in applications where increased viscosity, reduced shrinkage, lower exotherm, increased thermal shock resistance, increased thermal conductivity or flame retardancy are needed. Adding a filler always increases viscosity. If one or more of the properties cited are necessary but increased viscosity is not desirable, the viscosity increase can be nullified by warming the filled resin.

A **thixotropic** resin system is like a gel at rest but takes on the properties of a fluid when agitated. These systems are used in applications where “nonflow” is required, such as wet winding or encapsulation by dipping.

A **paste** is an extremely high viscosity resin normally applied by spatula, caulking, buttering or troweling.

Degree of flexibility

To answer this question, consider:

Are stress factors important?
The flexible and semiflexible resin systems exert the least stress on components.

- Will the component be subjected to thermal or mechanical shock? If so, choose a flexible or semiflexible resin.
- To what type of atmosphere will the component be exposed? Rigid epoxies, followed by room-curing epoxies, are usually the most resistant to solvents, chemicals, fuels and radiation.
- What physical property requirements must the resin meet? Rigid systems possess the highest heat-distortion temperature and best physical properties.

Continued on page 10
3M™ Scotchcast™ Liquid Resin Selection

Step 1: Select Type of Resin Cure Needed

- **Oven Cure Resins**
 - Oven Cure Unfilled Resins
 - Lower Viscosity
 - Better Impregnation
 - Oven Cure Filled Resins
 - Medium Viscosity
 - Higher Thermal Conductivity
 - Better Dimensional Stability
 - Oven Cure Thixotropic Resins
 - Highly Filled
 - Dipping, Buttering Applications

- **Room Cure Resins**
 - Room Cure Unfilled Resins
 - Lower Viscosity
 - Better Impregnation
 - Room Cure Filled Resins
 - Medium Viscosity
 - Higher Thermal Conductivity
 - Better Dimensional Stability
 - Room Cure Thixotropic Resins
 - Highly Filled
 - Troweling, Buttering Applications

Step 2: Select Degree of Flexibility Needed

- Rigid
- Semiflexible
- Flexible
- Flexible (re-enterable)

Step 3: Select Temperature Class Required

- Class F
- Class B
- Class 0

Step 4: Select Resin Selection Desired

- 250
- 3
- 280
- 235
- 251
- 281, MR283 F075
- 241, 255
- 252
- 282
- 253
- 5
- 8, 208
- 226
- 2123
- 9
- 2131
- 10, 210
Room Cures
Typical Property Data

<table>
<thead>
<tr>
<th>Polymer Cure/ Cured Form/ Filler/Color</th>
<th>Temperature Class</th>
<th>Product Number</th>
<th>Description</th>
<th>Mixing Ratio A:B</th>
<th>Viscosity4 @ 25°C (77°F) (Centipoise)</th>
<th>Cure Schedules2 (Temp/Time)</th>
<th>Gel Time1 (Minutes)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Polyurethane</td>
<td>B</td>
<td>226</td>
<td>This is a rubbery, castor-based, repairable polyurethane that has very low viscosity and excellent hydrolytic stability (meets MIL-I-16923G and naval avionics reversion requirements). Its low volatility at room temperature helps minimize potential toxicity.</td>
<td>WT 2:5</td>
<td>A = 190</td>
<td>23°C (73°F) 72 hrs. 67°C (152°F) 6 hrs.</td>
<td>15 min at 60°C (140°F)</td>
</tr>
<tr>
<td>Room Temp</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>B = 750</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Flexible Unfilled</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Mixed = 650</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Black</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Epoxy</td>
<td>B</td>
<td>5</td>
<td>Resin 5 is a general purpose, very low viscosity, chemical and moisture-resistant, transparent epoxy with a long pot life and low exotherm when compared to similar products.</td>
<td>WT 2:1</td>
<td>A = 12,500</td>
<td>23°C (73°F) 24-48 hrs. 60°C (140°F) 1 hr.</td>
<td>18 min at 60°C (140°F)</td>
</tr>
<tr>
<td>Room Temp</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>B = 100</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rigid Unfilled</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Mixed = 3,000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Clear Amber</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Epoxy</td>
<td>B</td>
<td>8</td>
<td>Resin 5 is a clear, general purpose electrical resin. 206 is red and supplied in kit form for use as a motor repair resin. Both semiflexible epoxies exhibit low stress, low exotherm, good fuel and oil resistance, long pot life, and permanent mechanical and thermal shock resistance.</td>
<td>WT 1:1</td>
<td>A = 12,500</td>
<td>23°C (73°F) 24-48 hrs. 60°C (140°F) 2 hrs.</td>
<td>30 min at 60°C (140°F)</td>
</tr>
<tr>
<td>Room Temp</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>B = 4,000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Semiflexible Unfilled</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Mixed = 7,000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Clear Reddish Brown</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Epoxy</td>
<td>B</td>
<td>9</td>
<td>This medium viscosity, filled version of Resin 8 possesses all the good features of 8 plus very low exotherm, less shrinkage (even lower stress), improved thermal shock resistance and higher thermal conductivity. Self extinguishing. Tested to MIL-I-16923G</td>
<td>WT 1:1</td>
<td>A = 90,000</td>
<td>23°C (73°F) 24-48 hrs. 60°C (140°F) 2 hrs.</td>
<td>28 min at 60°C (140°F)</td>
</tr>
<tr>
<td>Room Temp</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>B = 20,000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Semiflexible Filled</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Mixed = 28,000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reddish Brown</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Epoxy</td>
<td>B</td>
<td>10</td>
<td>Both of these products have a heavy paste (peanut butter) consistency. Resin 10 is for general use. Resin 210 is supplied in kit for use primarily as a motor repair resin. They are versions of 9 and exhibit many of its good features. Self extinguishing.</td>
<td>WT 1:1</td>
<td>A = paste</td>
<td>23°C (73°F) 24-48 hrs. 60°C (140°F) 2 hrs.</td>
<td>30 min at 60°C (140°F)</td>
</tr>
<tr>
<td>Room Temp</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>B = paste</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Semiflexible Filled</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Mixed = paste</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reddish Brown</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Polybutadiene</td>
<td>O</td>
<td>2123</td>
<td>3M™ Scotchcast™ Re-enterable Electrical Resin 2123 is a soft, two-part polybutadiene resin encapsulant designed specifically for re-enterable protection. It is formulated for virtually every electrical application requiring a soft, re-enterable resin with good handling and performance characteristics up to 1000 Volts.</td>
<td>WT 1:1</td>
<td>A = 350-750*</td>
<td>21°C (70°F) 24 hrs. 130°C to -55°C 4.9 343</td>
<td>62 min</td>
</tr>
<tr>
<td>Room Temp</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>B = 700-1400*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Soft, reenterable</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Unfilled</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Translucent amber</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Polyurethane</td>
<td>O</td>
<td>2131</td>
<td>3M™ Scotchcast™ Flame-Retardant Compound 2131 is a two-part polyurethane resin designed to withstand rugged conditions for operating up to 1000 Volts.</td>
<td>WT 1:2</td>
<td>A = 600-1100*</td>
<td>0°C (32°F) 24 hrs. 10°C (50°F) 24-30 hrs</td>
<td>17 min</td>
</tr>
<tr>
<td>Room Temp</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>B = 400-100000*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Flexible Unfilled</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Black</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Test methods

1. Brookfield Viscometer
2. The cure times do not take into consideration the time necessary for the part and resin to reach the cure temperature. The user must determine this time and add it to the cure time at temperature.
3. 3M Test Method, using Sunshine Gel Timer
4. Shore A = Immediate per ASTM D 2240
Shore D = Immediate per ASTM D2240
Barcol = Immediate per Barcol Hardness Tester
5. ASTM D792
6. Olyphant Inserts = 3M Test Method
(1/8 inch = 3,175 mm, 1/4 inch = 6,35 mm)
7. ASTM D696
8. ASTM D638
9. ASTM D570, 240 hrs. @ 96% R.H.
10. ASTM D1149
11. ASTM D257
12. ASTM D570-81, 24 hr. immersion @ 23°C
<table>
<thead>
<tr>
<th>Hardness</th>
<th>Specific Gravity/Density (Cured)</th>
<th>Thermal Shock Resistance (Passes 10 Cycles At Specified Temperature Range And Insert Size)</th>
<th>Linear Thermal Expansion (Length/Unit Length°C)</th>
<th>Tensile Strength (psi)</th>
<th>Thermal Conductivity (W/Mk)</th>
<th>Moisture Absorption (% Wt Gain)</th>
<th>Dielectric Strength (Volts Per Mil 1/8 Inch Sample)</th>
<th>Volume Resistivity (Ohm-Cm At 23°C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>75 Shore A</td>
<td>1.06/1.85 lb/gal</td>
<td>130°C to -55°C 1/4 inch insert</td>
<td>23 x 10⁻⁵</td>
<td>980</td>
<td>0.20</td>
<td>120 days 71°C, 95% R.H. = 0.45%</td>
<td>420</td>
<td>10⁻¹³</td>
</tr>
<tr>
<td>15 Barcol</td>
<td>1.12/1.35 lb/gal</td>
<td>Fails 1/8 inch insert</td>
<td>17.7 x 10⁻⁵</td>
<td>8000</td>
<td>0.18</td>
<td>0.50⁰</td>
<td>325</td>
<td>10⁻⁴⁴</td>
</tr>
<tr>
<td>68 Shore D</td>
<td>1.12/1.35 lb/gal</td>
<td>130°C to -55°C 1/8 inch insert</td>
<td>15 x 10⁻⁵</td>
<td>1700</td>
<td>0.18</td>
<td>1.60⁰</td>
<td>325</td>
<td>10⁻¹³</td>
</tr>
<tr>
<td>70 Shore D</td>
<td>1.42/11.85 lb/gal</td>
<td>130°C to -55°C 1/4 inch insert</td>
<td>13 x 10⁻⁵</td>
<td>2200</td>
<td>0.30</td>
<td>0.80⁰</td>
<td>350</td>
<td>10⁻¹³</td>
</tr>
<tr>
<td>70 Shore D</td>
<td>1.55/12.94 lb/gal</td>
<td>130°C to -55°C 1/4 inch insert</td>
<td>8.6 x 10⁻⁵</td>
<td>1500</td>
<td>0.34</td>
<td>0.44⁰</td>
<td>350</td>
<td>10⁻¹²</td>
</tr>
<tr>
<td>0 Shore A</td>
<td>0.53 oz./in.(3) [cubed]</td>
<td>*</td>
<td>*</td>
<td>10.7</td>
<td>10.7</td>
<td>0.2</td>
<td>>240</td>
<td></td>
</tr>
<tr>
<td>82 Shore A</td>
<td>0.69 oz./in.(3) [cubed]</td>
<td>*</td>
<td>*</td>
<td>1038</td>
<td>1038</td>
<td>4.9</td>
<td>343</td>
<td></td>
</tr>
</tbody>
</table>

* - Call Technical Service for details
Oven Cures

Typical Property Data – Unfilled Resins

<table>
<thead>
<tr>
<th>Polymer Cure/ Cured Form/ Filler/Color</th>
<th>Temperature Class</th>
<th>Product Number</th>
<th>Description</th>
<th>Mixing Ratio</th>
<th>Viscosity</th>
<th>Cure Schedules</th>
<th>Gel Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>Epoxy Oven Temp Rigid Unfilled Brown</td>
<td>F</td>
<td>250</td>
<td>The distinguishing features of this product are its high-temperature stability, good electrical and physical properties, and low viscosity. It is used where adhesion, mechanical strength and good electricals at high temperatures are needed.</td>
<td>Wt 1:1</td>
<td>Vol (%) 50:50</td>
<td>A=13,000, B=130, Mixed=1,800</td>
<td>75°C (167°F) 15-20 hrs. 95°C (203°F) 6-8 hrs. 120°C (248°F) 2-3 hrs.</td>
</tr>
<tr>
<td>Epoxy Oven Temp Rigid Unfilled Clear Amber</td>
<td>B</td>
<td>3</td>
<td>This product has very low viscosity that allows for complete impregnation of small voids. It is also characterized by good electricals, outstanding physical stability and superior moisture resistance.</td>
<td>Wt 2:3</td>
<td>Vol (%) 36:33</td>
<td>A = 12,500, B = 400, Mixed = 1,600</td>
<td>77°C (167°F) 12-16 hrs. 95°C (203°F) 6-8 hrs. 120°C (248°F) 1-2 hrs.</td>
</tr>
<tr>
<td>Epoxy Oven Temp Semiflexible Unfilled Clear Amber</td>
<td>F</td>
<td>280</td>
<td>This product is characterized by its high-temperature stability, superior electrical properties and thermal shock resistance.</td>
<td>Wt 2:3</td>
<td>Vol (%) 36:33</td>
<td>A = 12,500, B = 2,500, Mixed = 4,000</td>
<td>75°C (167°F) 24 hrs. 95°C (203°F) 6-8 hrs. 120°C (248°F) 3-4 hrs.</td>
</tr>
<tr>
<td>Epoxy Oven Temp Semiflexible Unfilled Reddish-Brown</td>
<td>B</td>
<td>235</td>
<td>Permanent semiflexibility, thermal shock and impact resistance, stable properties, good electricals and adhesion are features of Resin 235. Very low viscosity and good wetting ability allow for complete impregnation of small voids.</td>
<td>Wt 1:2</td>
<td>Vol (%) 31:69</td>
<td>A = 13,000, B = 1,000, Mixed = 1,800</td>
<td>75°C (167°F) 15-20 hrs. 95°C (203°F) 6-8 hrs. 120°C (248°F) 2-3 hrs.</td>
</tr>
</tbody>
</table>

Filled Resins

<table>
<thead>
<tr>
<th>Polymer Cure/ Cured Form/ Filler/Color</th>
<th>Temperature Class</th>
<th>Product Number</th>
<th>Description</th>
<th>Mixing Ratio</th>
<th>Viscosity</th>
<th>Cure Schedules</th>
<th>Gel Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>Epoxy Oven Temp Rigid Filled Brown</td>
<td>F</td>
<td>251</td>
<td>This medium viscosity, filled version of Resin 250 offers many of the same advantages plus lower shrinkage, improved mechanical and thermal shock resistance and higher thermal conductivity. It meets the requirements of MIL-T-16923G. Self extinguishing.</td>
<td>Wt 1:1</td>
<td>Vol (%) 59:50</td>
<td>A=175,000, B=10,000, Mixed=19,000</td>
<td>75°C (167°F) 15-20 hrs. 95°C (203°F) 6-8 hrs. 120°C (248°F) 2-3 hrs.</td>
</tr>
<tr>
<td>Semiflexible Filled Cream</td>
<td>F</td>
<td>F0275</td>
<td>This product is formulated for excellent thermal shock resistance and hydrolytic stability, low embedment stress, and strong electrical properties.</td>
<td>Wt 5:1</td>
<td>Vol (%) 36.3:10</td>
<td>A = 40,000, B = 150, Mixed = 6,800</td>
<td>75°C (167°F) 36-48 hrs. 95°C (203°F) 6-10 hrs. 120°C (248°F) 3-4 hrs.</td>
</tr>
<tr>
<td>Epoxy Oven Temp Semiflexible Filled Off-White</td>
<td>B</td>
<td>255</td>
<td>Resin 255 meets flame retardancy requirements of Fed. Std. 406, Method 2023 and meets the requirements of MIL-T-16923G when postcured for 16 hours at 121°C. It also offers excellent thermal and mechanical shock resistance. Self extinguishing.</td>
<td>Wt 2:3</td>
<td>Vol (%) 39:61</td>
<td>A = 12,000, B = 40,000, Mixed = 25,000</td>
<td>82°C (180°F) 16-20 hrs. 121°C (250°F) 3-4 hrs.</td>
</tr>
<tr>
<td>Epoxy Oven Temp Semiflexible Filled Cream</td>
<td>F</td>
<td>281</td>
<td>This filled version of Resin 280 offers many of the key features of resin 280 plus lower shrinkage, improved thermal and mechanical shock resistance, plus high thermal conductivity.</td>
<td>Wt 2:3</td>
<td>Vol (%) 37:63</td>
<td>A = 320,000, B = 38,000, Mixed = 75,000</td>
<td>75°C (167°F) 24 hrs. 95°C (203°F) 6-8 hrs. 120°C (248°F) 3-4 hrs.</td>
</tr>
<tr>
<td>Epoxy Oven Temp Semiflexible Filled Reddish-Brown</td>
<td>B</td>
<td>241</td>
<td>This filled version of Resin 235 offers many of the key features of resin 235 plus lower shrinkage, improved thermal and mechanical shock resistance, and increased thermal conductivity. Self extinguishing.</td>
<td>Wt 1:2</td>
<td>Vol (%) 31:69</td>
<td>A = 175,000, B = 9,000, Mixed = 15,000</td>
<td>75°C (167°F) 15-20 hrs. 95°C (203°F) 6-8 hrs. 120°C (248°F) 2-3 hrs.</td>
</tr>
<tr>
<td>Hardness</td>
<td>Specific Gravity/Density (Cured)</td>
<td>Thermal Shock Resistance (Passes 10 Cycles At Specified Temperature Range And Insert Size)</td>
<td>Linear Thermal Expansion (Length/Unit Length/°C)</td>
<td>Tensile Strength (psi)</td>
<td>Thermal Conductivity (W/Mk)</td>
<td>Moisture Absorption (% Wt Gain)</td>
<td>Dielectric Strength (Volts Per Mil. 1/8 Inch Sample)</td>
</tr>
<tr>
<td>----------</td>
<td>--------------------------------</td>
<td>---</td>
<td>---</td>
<td>----------------------</td>
<td>--------------------------</td>
<td>-----------------------------</td>
<td>--</td>
</tr>
<tr>
<td>25 Barcol</td>
<td>1.06/8.85 lb/gal</td>
<td>Falls 1/8 inch insert</td>
<td>6.5 x 10⁻³</td>
<td>7780</td>
<td>0.15</td>
<td>0.30</td>
<td>325</td>
</tr>
<tr>
<td>80 Shore D</td>
<td>1.12/9.35 lb/gal</td>
<td>Falls 1/8 inch insert</td>
<td>20 x 10⁻³</td>
<td>4400</td>
<td>0.17</td>
<td>0.50</td>
<td>300</td>
</tr>
<tr>
<td>73 Shore D</td>
<td>1.12/9.35 lb/gal</td>
<td>130°C to -65°C 1/8 insert</td>
<td>21 x 10⁻³</td>
<td>1950</td>
<td>0.22</td>
<td>0.52</td>
<td>375</td>
</tr>
<tr>
<td>55 Shore D</td>
<td>1.42/11.85 lb/gal</td>
<td>130°C to -55°C 1/8 inch insert</td>
<td>16 x 10⁻³</td>
<td>1300</td>
<td>0.17</td>
<td>0.92</td>
<td>325</td>
</tr>
<tr>
<td>40 Barcol</td>
<td>1.50/12.52 lb/gal</td>
<td>Falls 1/8 inch insert passes MIL-I-16923G (105°C to -55°C)</td>
<td>5 x 10⁻⁴</td>
<td>5280</td>
<td>0.33</td>
<td>0.25</td>
<td>425</td>
</tr>
<tr>
<td>80 Shore C</td>
<td>1.55</td>
<td>155°C to -65°C 1/8 inch insert</td>
<td>17 x 10⁻⁴</td>
<td>3700</td>
<td>0.46</td>
<td>0.15</td>
<td>372</td>
</tr>
<tr>
<td>72 Shore D</td>
<td>1.56/13.02 lb/gal</td>
<td>130°C to -55°C 1/4 inch insert</td>
<td>15 x 10⁻⁴</td>
<td>1500</td>
<td>0.19</td>
<td>0.45</td>
<td>375</td>
</tr>
<tr>
<td>73 Shore D</td>
<td>1.43/11.93 lb/gal</td>
<td>130°C to -65°C 1/4 inch insert</td>
<td>15 x 10⁻⁴</td>
<td>2100</td>
<td>0.50</td>
<td>0.32</td>
<td>375</td>
</tr>
<tr>
<td>65 Shore D</td>
<td>1.42/11.85 lb/gal</td>
<td>130°C to -55°C 1/4 inch insert</td>
<td>13.6 x 10⁻³</td>
<td>1300</td>
<td>0.33</td>
<td>0.60</td>
<td>375</td>
</tr>
<tr>
<td>Polymer Cure/ Cured Form/ Filler/Color</td>
<td>Temperature Class</td>
<td>Product Number</td>
<td>Description</td>
<td>Mixing Ratio</td>
<td>Viscosity@25°C (77°F) (Centipoise)</td>
<td>Cure Schedules¹ (Temp/Time)</td>
<td>Gel Time¹ (Minutes)</td>
</tr>
<tr>
<td>-------------------------------------</td>
<td>------------------</td>
<td>----------------</td>
<td>---</td>
<td>--------------</td>
<td>-----------------------------------</td>
<td>-----------------------------</td>
<td>---------------------</td>
</tr>
<tr>
<td>Epoxy</td>
<td>F</td>
<td>252</td>
<td>Resin 252 is a thixotropic version of Resin 251 and offers many of the same advantages. Its thixotropic nature renders it useful in dipping, brushing or troweling applications where resistance to running or sagging is a requirement.</td>
<td>Wt 1:1</td>
<td>A=Thixotropic</td>
<td>75°C (167°F) 15-20 hrs. 95°C (203°F) 6-8 hrs. 120°C (248°F) 2-3 hrs.</td>
<td>21</td>
</tr>
<tr>
<td>Epoxy</td>
<td>B</td>
<td>282</td>
<td>Resin 282 is a thixotropic version of Resin 281 offering many of the same advantages. It is also used in dipping, brushing or troweling applications where resistance to running or sagging is a requirement. Self extinguishing.</td>
<td>Wt 2:3</td>
<td>A=Thixotropic</td>
<td>82°C (180°F) 16-20 hrs. 121°C (250°F) 3-4 hrs.</td>
<td>23</td>
</tr>
<tr>
<td>Epoxy</td>
<td>F</td>
<td>253</td>
<td>This product offers many of the advantages of Resins 241 and 243. Its thixotropic nature renders it useful in dipping, brushing or troweling applications where resistance to running or sagging is a requirement.</td>
<td>Wt 1:2</td>
<td>A=Thixotropic</td>
<td>75°C (167°F) 24 hrs. 95°C (203°F) 6-8 hrs. 120°C (248°F) 3-4 hrs.</td>
<td>25 min. @ 120°C (248°F)</td>
</tr>
<tr>
<td>Primer</td>
<td>B</td>
<td>5136N</td>
<td>A one-part, solvent-based system specifically designed to help improve the adhesion of 3M's polyurethane resins to soft substrates such as neoprene, vinyl, polyurethanes, rubbers and semiflexible epoxies.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Scotchcast liquid resins are easy-to-use two-part systems
<table>
<thead>
<tr>
<th>Hardness</th>
<th>Specific Gravity/Density</th>
<th>Thermal Shock Resistance (Passes 10 Cycles at Specified Temperature Range and Insert Size)</th>
<th>Linear Thermal Expansion (Length/Unit Length°C)</th>
<th>Tensile Strength (psi)</th>
<th>Thermal Conductivity (W/M°C)</th>
<th>Moisture Absorption (% Wt Gain)</th>
<th>Dielectric Strength (Volts Per Mil. 1/8 Inch Sample)</th>
<th>Volume Resistivity (Ωcm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>45 Barcol</td>
<td>1.51/12.60 lb/gal</td>
<td>Fails 1/8 inch insert Passes MIL-I-16923G (105°C to -55°C)</td>
<td>4×10^{-5}</td>
<td>6000</td>
<td>0.29</td>
<td>0.35</td>
<td>325</td>
<td>10^{14}</td>
</tr>
<tr>
<td>73 Shore D</td>
<td>1.43/11.93 lb/gal</td>
<td>130°C to -65°C 1/4 inch insert</td>
<td>15×10^{-5}</td>
<td>2100</td>
<td>0.50</td>
<td>0.32</td>
<td>375</td>
<td>10^{15}</td>
</tr>
<tr>
<td>65 Shore D</td>
<td>1.50/12.52 lb/gal</td>
<td>130°C to -55°C 1/4 inch insert</td>
<td>12.6×10^{-5}</td>
<td>1300</td>
<td>0.33</td>
<td>0.69</td>
<td>375</td>
<td>10^{15}</td>
</tr>
</tbody>
</table>
Temperature class
A resin rated in a specific temperature class is deemed capable of operating continuously at that temperature. The Association of Industrial Electrical Engineers (AIEE) denotes some of these temperature class ratings:

- Class O = 90°C (194°F)
- Class A = 105°C (221°F)
- Class B = 130°C (266°F)
- Class F = 155°C (311°F)
- Class H = 180°C (356°F)

Application Considerations
In addition to these four basic questions, consider the following factors:

Does the product meet the handling, electrical and physical property requirements of the application?

What specifications must the resin meet?
Does the selected product satisfy these requirements? Specifications are often of major importance, despite the fact that their consideration may not always indicate the best product for the application. Nevertheless, they must either be met or modified.

What problems have existed with other methods or products that have been used or evaluated?

Does the selected resin have the right clarity or color?
Clear, amber, cream and tan resin systems are pigmentable. The user is responsible for determining if pigmentation affects the properties important to the application. These guidelines may be helpful in making that determination:

- Only predispersed, electrical grade pigmentation systems should be evaluated.
- The amount of pigmentation system added should be kept at an absolute minimum (less than two percent).
- The pigmented product should be tested for conformance to all application requirements before actual full-scale use.

Is the viscosity of the resin appropriate to the needs of the application?
Viscosity is a measure of the resistance of a liquid to shear forces. This property is important for handling purposes, and in cases where a specific range or type of viscosity may be necessary to meet the needs of the application, e.g., low viscosity to impregnate tightly wound or small diameter windings, or high viscosity for dipping applications. The most common means of viscosity measurement is Brookfield viscosity, reported in centipoise. The table beginning on page 6 shows the wide viscosity range of 3M™ Scotchcast™ Electrical Liquid Resins. The values listed for Scotchcast resins 3, 235 and 241 at various temperatures show how viscosity can be lowered by heating. Values are at room temperature or 25°C (77°F), unless otherwise indicated.
Selection and Application

Powder resin selection depends primarily on the method of application available. The five most commonly used methods of applying powder resins are:

- Fluid bed dip
- Venturi spray
- Electrostatic spray
- Electrostatic fluid bed

Selection Process

The best way to select the proper 3M™ Scotchcast™ Powder Resin is to consider the needs of the application and the proposed application method. Besides evaluating the property values, product descriptions and selection chart on the next few pages, consider the following:

Application

Successful coating with powder resins is accomplished in four basic steps:

1. Clean the part

One or more processes may be necessary to complete this step: Mechanical removal of rust, dirt, oxide and other contaminant. Common methods include media blasting, vapor de-greasing, or steam cleaning.

2. Preheat the part

Preheating may be omitted if parts are to be coated electrostatically at room temperature, in which case they must be thoroughly dried before coating to prevent outgassing. Forced air ovens, induction heating, radiant heating and resistance heating are four common methods used to preheat parts, cure the resin or both.

3. Coat the part

Preheated parts

When applied to preheated parts, powder particles melt, flow together, fuse and then cure. When dipping or spraying, the coating thickness depends on the temperature of the part, the duration of the dip/spray, and the melt rate and melt viscosity of the powder. If the powder is applied electrostatically to a

preheated part, coating thickness depends on the temperature of the part, the duration of the powder application, the voltage applied to the powder, the chargeability of the powder and its melt rate and melt viscosity.

Unheated parts

When unheated parts are coated electrostatically, the charged powder resin particles cling to the grounded part. The coating thickness depends on the duration of the powder application, the voltage applied to the powder and the powder’s chargeability.

4. Cure the resin

When large, preheated parts are coated, the mass of the part may hold the heat necessary to cure the resin fully without postcuring. However, smaller parts may lose so much heat during coating that they require a postcure to obtain full cure. The time/temperature relationships necessary to obtain full cure are given in the chart on page 14 and on individual product information sheets. These time/temperature relationships do not include the time necessary to heat or reheat the part to the curing temperature. The user must make this determination and start the time cycle when the temperature is reached.

UL Insulation Systems

Insulation systems established per UL 1446 and IEC 85 requirements are available for various 3M Scotchcast Resins up to class H (180°C). The major system components include Scotchcast resin as integral ground insulation, magnet wire, interlayer insulation, and molding material. “Minor” components such as 3M Electrical Tapes, sheet insulation, tie cords, lead wires, varnish, etc. have been added, making the 3M Electrical Insulation Systems ideal for most applications. (If these powder resins do not meet your requirements, consider 3M Flexible Insulations products as an alternative.) The Systems are recognized in UL file E163090 (OBJS2). Contact Technical Service for more details. Many Scotchcast powder resins are also recognized by UL as component insulation per UL 746B. These are listed UL file E35075 (QMFZ2) and E309208 (OBOR2).
What component needs to be insulated?

Step 1: Define what needs to be coated

- Motor or transformer iron, toroidal core, bus bar, etc.
- Transformer Wire, flexible assembly, etc.
- Wound assembly (coil impregnation)

Step 2: Determine the coating application method

- Electrostatic Fluid Bed
- Electrostatic Spray
- Venturi Spray (hot)
- Fluid Bed Dip (hot)

Step 3: Select the coating that best fits the needs

- SC 5320N
- SC 5555
- SC 5400
- SC 275
- SC 260
- SC 262
- SC 266
- SC 260CG
- SC 265
- SC 263
- 260CG
- SC 262
- SC 5555
- SC 260
- SC 263
- 266
- SC 260CG
- SC 262
Step 1: Define what needs to be coated

- What is it that needs electrically insulated?
 - Motor stator or armature core?
 - Transformer wire? Coiled assembly?

3M offers a number of epoxy powder coatings suitable for use on a variety of applications.

Step 2: Determine the coating application method

- How large or small is the component?
- Are there complex, hard-to-reach areas that need insulated?
- Will intricate masking be needed?

Knowing the size and geometry of the component helps determine the feasibility of powder coating as well as determining which application method is the most efficient. The most common application methods are:

- **Fluid Bed Dip** – Components are preheated and dipped into a powder fluid bed or powder hopper. The epoxy begins to gel immediately upon contact with the hot substrate.

- **Venturi Spray** – Components are preheated and powder is applied using venturi nozzles or powder spray guns. The epoxy begins to gel immediately upon contact with the hot substrate.

- **Electrostatic Spray** – Powder is sprayed using an electrostatic application gun. This is a common method used by powder coaters globally. Powder is positively charged either by a high-voltage corona or triboelectric friction. The charged particles adhere to grounded components. Parts can be coated at room temperature, however, thicker film builds are obtained when applying powder to preheated components.

- **Electrostatic Fluid Bed** – This is similar in construction to a standard powder fluid bed, however the air feeding the powder chamber is electrostatically charged creating a cloud of powder. The charged particles from the cloud adhere to grounded components. Parts are typically at room temperature when coated using this method.

Step 3: Select the coating that best fits the needs

- What temperature will the coating be subject to?
- Is UL Recognition of importance? What dielectric strength is needed?
- What heating methods are available to cure the powder coating?

These are only a few questions that should be addressed prior to selecting a coating. The chart on pages 14-15 will list a number of performance criteria that can help narrow down the product selection.

- The substrate to which the powder epoxy is being applied plays an important role in the adhesion performance of the coating.

- The 3M™ Scotchcast™ Power Resins adhere well to carbon steel, aluminum and copper.

- Surface preparation, oxidation, existing insulation coatings and substrate alloy need to be taken into consideration.

- To obtain the best adhesion, substrate cleanliness is absolutely necessary.

- Alloy selection may have an impact on coating adhesion as well.
Powder Resins Typical Property Data

<table>
<thead>
<tr>
<th>Temp Class</th>
<th>Product Number</th>
<th>Description</th>
<th>UL System Component</th>
<th>Cure Schedules (Temp/Time)</th>
</tr>
</thead>
<tbody>
<tr>
<td>H</td>
<td>260 260CG</td>
<td>This widely used, well known product is used primarily in spray and fluid bed dip applications. 3M™ Scotchcast™ Resin 260CG is a course-ground version of Resin 260 for improved fluidized bed performance. UL Recognized.</td>
<td>✓ E35075</td>
<td>149°C (300°F) 30 min 177°C (350°F) 10 min 204°C (400°F) 30 sec 232°C (450°F) 20 sec 450°F (232°C) 5 min</td>
</tr>
<tr>
<td>B</td>
<td>262</td>
<td>This resin has excellent flow characteristics which produce a uniform coating in applications such as resistance heated bobbin-wound coils. It is used primarily in spray and fluid bed dip applications.</td>
<td></td>
<td>149°C (300°F) 40 min 177°C (350°F) 20 min 204°C (400°F) 60 sec 232°C (450°F) 30 sec</td>
</tr>
<tr>
<td>H</td>
<td>263</td>
<td>Resin 263 is used primarily in spray and fluid bed dip applications and has been designed for use where high temperature cut-through resistance is required. UL Recognized.</td>
<td>✓ E35075</td>
<td>149°C (300°F) 30 min 177°C (350°F) 10 min 204°C (400°F) 30 sec 232°C (450°F) 20 sec</td>
</tr>
<tr>
<td>H</td>
<td>265</td>
<td>Low melt viscosity and minimum build make this unfilled powder ideal for a variety of coating, bonding and impregnating applications, notably coating from a solvent.</td>
<td>E309208</td>
<td>149°C (300°F) 60 min 177°C (350°F) 20 min 204°C (400°F) 5 min 232°C (450°F) 2 min</td>
</tr>
<tr>
<td>B</td>
<td>266</td>
<td>Resin is specially formulated for application using the electrostatic fluid bed or spray process, but can be used with conventional fluid beds also. It is similar in color to Scotchcast 260 resin and features improved impact resistance. Also available in a blue/green version designated Resin 266 TC.</td>
<td>E35075</td>
<td>177°C (350°F) 5 min 204°C (400°F) 150 sec 232°C (450°F) 50 sec</td>
</tr>
<tr>
<td>275</td>
<td></td>
<td>Excellent flexibility while maintaining good dielectric strength is the key characteristic of Resin 275. This ability to bend makes this coating ideal for coating wire products or other flexible assemblies.</td>
<td>No</td>
<td>350°F (177°C) 20 min 375°F (191°C) 12 min 400°F (204°C) 8 min 425°F (218°C) 6 min 450°F (232°C) 5 min</td>
</tr>
<tr>
<td>F</td>
<td>523ON</td>
<td>Resin 523ON was designed with excellent electrostatic charging capabilities. It provides smooth, uniform film build with good slot penetration when applied using an electrostatic fluid bed. UL Recognized method.</td>
<td>✓ E35075</td>
<td>177°C (350°F) 15 min. 204°C (400°F) 6 min. 232°C (450°F) 3 min.</td>
</tr>
<tr>
<td>H</td>
<td>5400</td>
<td>Resin was developed for continuous coating of wire products by electrostatic fluidized bed. Excellent flexibility and resistance to cracking due to heat shock or impact are just several of the very excellent characteristics.</td>
<td></td>
<td>200°C (392°F) 15 min 250°C (482°F) 5 min 300°C (572°F) 30 sec 350°C (662°F) 30 sec</td>
</tr>
<tr>
<td>H</td>
<td>5555 10G 5555 22G</td>
<td>Resin 5555 can be applied via cold electrostatic spray or electrostatic fluid bed. It also can be applied to pre-heated components by fluid bed dipping or by spraying. Its versatility allows this powder to be used on a wide variety of motor stators, armatures, and other metal components needing electrical insulation. UL Recognized.</td>
<td>✓ E35075</td>
<td>204°C (400°F) 10G 150 sec 22G 4 min.</td>
</tr>
<tr>
<td>Specific Gravity</td>
<td>Cut-Through Resistance</td>
<td>Edge Coverage (%)</td>
<td>Impact Resistance (inch-lbs, Newton Meters)</td>
<td>Gel Time @ 193°C Hot Plate</td>
</tr>
<tr>
<td>-----------------</td>
<td>-----------------------</td>
<td>-------------------</td>
<td>---</td>
<td>-----------------------------</td>
</tr>
<tr>
<td>1.43</td>
<td>215°C (410°F)</td>
<td>>35</td>
<td>100 inch-lbs (11.3 J)</td>
<td>12-16 sec @ 380°F (193°C)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.34</td>
<td>130°C (266°F)</td>
<td>>38</td>
<td>100 inch-lbs (11.3 J)</td>
<td>12-16 sec @ 380°F (193°C)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.47</td>
<td>290°C (554°F)</td>
<td>>40</td>
<td>100 inch-lbs (11.3 J)</td>
<td>12-16 sec @ 380°F (193°C)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.16</td>
<td>N/A</td>
<td>N/A</td>
<td>160 inch-lbs (18.1J)</td>
<td>7-15 sec @ 380°F (193°C)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.55</td>
<td>260°C (500°F)</td>
<td>.35</td>
<td>160 inch-lbs (18.1J)</td>
<td>60 sec @ 380°F (193°C)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.21</td>
<td>N/A</td>
<td>N/A</td>
<td>160 inch-lbs (18.1J)</td>
<td>15 - 20 Sec @ 400°F (204°C)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.60</td>
<td>320°C (608°F)</td>
<td>>35</td>
<td>160 inch-lbs (18.1J)</td>
<td>9-16 sec @ 380°F (193°C)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.22</td>
<td>170°C (338°F)</td>
<td>N/A</td>
<td>160 inch-lbs (18.1J)</td>
<td>15-25 sec @ 400°F (204°C)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.7</td>
<td>340°C (644°F)</td>
<td>>35 (10G)</td>
<td>100 inch-lbs (11.3 J)</td>
<td>9-11 sec @ 392°F (200°C) (10G)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>>40 (22G)</td>
<td></td>
<td>21-23 sec @ 392°F (200°C) (22G)</td>
</tr>
</tbody>
</table>
Other Insulating Solutions from 3M Company

3M offers a variety of insulating and protecting products that are performance engineered to meet rigorous applications at a range of temperatures.

Flexible Insulation

3M™ Flexible Insulation includes state-of-the-art insulating papers and laminates that have been refined, tested and proven in a wide variety of applications, including use as high-temperature electrical insulation in transformers, motors and generators; and as flame barriers in household appliance. These primarily inorganic materials typically retain a high percentage of dielectric strength, even after extended exposure to high operating temperatures.

Insulating Tapes

3M™ Insulating and Conductive Tapes are made from a broad range of backings and adhesives to meet the demanding requirements of different applications and environments. Extensive quality control and testing, combined with accurate process controls, are just part of the reason that 3M consistently provides high quality insulating products.

Heat Shrink Tubing and Molded Shapes

3M™ Heat Shrink Products provide a uniquely effective means of applying skin-tight insulating and protective coverings for a wide variety of electrical, electronic and mechanical applications. These products from 3M offer the important advantages of simple installation, excellent performance and long-term reliability. 3M also makes cold shrink tubing designed for insulation wire and cable and for strain relief and physical protection.
3M™ Scotchcast™ Resins for Original Equipment Manufacturers

3M™ Scotchcast™ Electrical Liquid Resins are 100-percent solid, thermosetting, electrical-grade insulating resins. Classified chemically as either epoxies or polyurethanes, the product line includes two-part epoxy liquids and two-part polyurethane liquids. The unique electrical and physical properties make them ideal for insulating and protecting electrical and electronic parts and assemblies. Their physical features also make them suitable for nonelectrical, general use applications such as adhesives and sealants.

3M™ Scotchcast™ Powder Resins are a series of one-part, 100-percent-solid electrical-grade systems offering fast curing, excellent thermal and mechanical shock resistance, significant cut-through resistance, high adhesion, excellent chemical and moisture resistance, high-to-low flow characteristics, and excellent electrostatic coating capability.

Table of Contents

3M™ Scotchcast™ Electrical Liquid Resins ...1
 Selection Process ..1
 Product Selection Guide ..3
 Typical Product Data ..6
 Viscosity ...10

3M Scotchcast Powder Resins ..11
 Selection Process ..11
 Product Selection Guide ..12
 Typical Product Data ..14
 Other Insulating Products from 3M ..16
Important Notice

All statements, technical information, and recommendations related to 3M's products are based on information believed to be reliable, but the accuracy or completeness is not guaranteed. Before using this product, you must evaluate it and determine if it is suitable for your intended application. You assume all risks and liability associated with such use. Any statements related to the product which are not contained in 3M's current publications, or any contrary statements contained on your purchase order shall have no force or effect unless expressly agreed upon, in writing, by an authorized officer of 3M.

Warranty; Limited Remedy; Limited Liability.

Because conditions of product use are outside of our control and vary widely, the following is made in lieu of all express or implied warranties: this product will conform to 3M's published product specifications and be free from defects in material and manufacture on the date of your purchase. 3M MAKES NO OTHER WARRANTIES INCLUDING, BUT NOT LIMITED TO, ANY IMPLIED WARRANTY OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. If this product is defective upon your receipt, your exclusive remedy shall be, at 3M's option, to replace the 3M product or refund the purchase price of the 3M product. Except where prohibited by law, 3M will not be liable for any indirect, special, incidental or consequential loss or damage arising from this 3M product, regardless of the legal theory asserted.

Please recycle. Printed in USA.
© 3M 2014. All rights reserved.
80-6016-0728-8